Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene

نویسندگان

  • M. E. Jenkin
  • K. P. Wyche
  • C. J. Evans
  • T. Carr
  • P. S. Monks
  • M. R. Alfarra
  • M. H. Barley
  • G. B. McFiggans
  • J. C. Young
چکیده

A degradation mechanism for β-caryophyllene has recently been released as part of version 3.2 of the Master Chemical Mechanism (MCM v3.2), describing the gas phase oxidation initiated by reaction with ozone, OH radicals and NO3 radicals. A detailed overview of the construction methodology is given, within the context of reported experimental and theoretical mechanistic appraisals. The performance of the mechanism has been evaluated in chamber simulations in which the gas phase chemistry was coupled to a representation of the gas-to-aerosol partitioning of 280 multi-functional oxidation products. This evaluation exercise considered data from a number of chamber studies of either the ozonolysis of β-caryophyllene, or the photo-oxidation of β-caryophyllene/NOx mixtures, in which detailed product distributions have been reported. This includes the results of a series of photo-oxidation experiments performed in the University of Manchester aerosol chamber, also reported here, in which a comprehensive characterization of the temporal evolution of the organic product distribution in the gas phase was carried out, using Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS), in conjunction with measurements of NOx, O3 and SOA mass loading. The CIR-TOF-MS measurements allowed approximately 45 time-resolved product ion signals to be detected, which were assigned on the basis of the simulated temporal profiles of the more abundant MCM v3.2 species, and their probable fragmentation patterns. The evaluation studies demonstrate that the MCM v3.2 mechanism provides an acceptable description of β-caryophyllene degradation under the chamber conditions considered, with the temporal evolution of the observables identified above generally being recreated within the uncertainty bounds of key parameters within the mechanism. The studies have highlighted a number of areas of uncertainty or discrepancy, where further investigation would be valuable to help interpret the results of chamber studies and improve detailed mechanistic understanding. These particularly include: (i) quantification of the yield and stability of the secondary ozonide (denoted BCSOZ in MCM v3.2), formed from β-caryophyllene ozonolysis, and elucidation of the details of its further oxidation, including whether the products retain the “ozonide” functionality; (ii) investigation of the impact of NOx on the β-caryophyllene ozonolysis mechanism, in particular its effect on the formation of β-caryophyllinic acid (denoted Published by Copernicus Publications on behalf of the European Geosciences Union. 5276 M. E. Jenkin et al.: Development and chamber evaluation of the MCM v3.2 degradation scheme C137CO2H in MCM v3.2), and elucidation of its formation mechanism; (iii) routine independent identification of βcaryophyllinic acid, and its potentially significant isomer βnocaryophyllonic acid (denoted C131CO2H in MCM v3.2); (iv) more precise quantification of the primary yield of OH (and other radicals) from β-caryophyllene ozonolysis; (v) quantification of the yields of the first-generation hydroxy nitrates (denoted BCANO3, BCBNO3 and BCCNO3 in MCM v3.2) from the OH-initiated chemistry in the presence of NOx; and (vi) further studies in general to improve the identification and quantification of products formed from both ozonolysis and photo-oxidation, including confirmation of the simulated formation of multifunctional species containing hydroperoxide groups, and their important contribution to SOA under NOx-free conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Structural Characterization of Bi2O3 Loaded on the MCM-41 and Study of Its Photocatalytic Performance in Degradation of Methylene Blue

In this work, we report synthesis and characterization of Bi2O3 nanoparticles loaded on mesoporous MCM-41 nanoparticles by a simple solid-state dispersion (SSD) method. Monoclinic bismuth oxide nanoparticles were prepared by polyacrylamide gel method and used as loading materials on the prepared mesoporous MCM-41 as a supporting material. Fourier transform infrared spectroscopy (FT-IR), X-ray p...

متن کامل

Simulations of EUPHORE and field experiments using a master chemical mechanism

Introduction In recent years, a master chemical mechanism (MCM) has been developed to describe the atmospheric degradation of VOC in the atmosphere (Jenkin et al., 1997a; Saunders et al., 1997). The MCM has been developed as part of a collaborative project between the University of Leeds, AEA Technology plc and the UK Meteorological Office, and funded by the UK Department of the Environment (no...

متن کامل

Synthesis and Structural Characterization of Bi2O3 Loaded on the MCM-41 and Study of Its Photocatalytic Performance in Degradation of Methylene Blue

In this work, we report synthesis and characterization of Bi2O3 nanoparticles loaded on mesoporous MCM-41 nanoparticles by a simple solid-state dispersion (SSD) method. Monoclinic bismuth oxide nanoparticles were prepared by polyacrylamide gel method and used as loading materials on the prepared mesoporous MCM-41 as a supporting material. Fourier transform infrared spectroscopy (FT-IR), X-ray p...

متن کامل

β- Galactosidase mediated release characteristics of lornoxicam loaded guar gum microspheres: evaluation and product development

The present investigation was aimed at developing a novel colon targeted system of lornoxicam based on the use of a combination of pH dependent system (to prevent the premature release of drug in the upper GIT) and enzymatically degradation system (to ensure the specificity of drug release in the colon). The drug loaded guar gum microspheres prepared by emulsification cross-linking method were ...

متن کامل

Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data

The degradation mechanism of 1,3,5-trimethylbenzene (TMB) as implemented in the Master Chemical Mechanism version 3.1 (MCM) was evaluated using data from the environmental chamber at the Paul Scherrer Institute. The results show that the MCM provides a consistent description of the photo-oxidation of TMB/NO x mixtures for a 5 range of conditions. In all cases the agreement between the measureme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012